Multi-Modal Glioblastoma Segmentation: Man versus Machine

نویسندگان

  • Nicole Porz
  • Stefan Bauer
  • Alessia Pica
  • Philippe Schucht
  • Jürgen Beck
  • Rajeev Kumar Verma
  • Johannes Slotboom
  • Mauricio Reyes
  • Roland Wiest
چکیده

BACKGROUND AND PURPOSE Reproducible segmentation of brain tumors on magnetic resonance images is an important clinical need. This study was designed to evaluate the reliability of a novel fully automated segmentation tool for brain tumor image analysis in comparison to manually defined tumor segmentations. METHODS We prospectively evaluated preoperative MR Images from 25 glioblastoma patients. Two independent expert raters performed manual segmentations. Automatic segmentations were performed using the Brain Tumor Image Analysis software (BraTumIA). In order to study the different tumor compartments, the complete tumor volume TV (enhancing part plus non-enhancing part plus necrotic core of the tumor), the TV+ (TV plus edema) and the contrast enhancing tumor volume CETV were identified. We quantified the overlap between manual and automated segmentation by calculation of diameter measurements as well as the Dice coefficients, the positive predictive values, sensitivity, relative volume error and absolute volume error. RESULTS Comparison of automated versus manual extraction of 2-dimensional diameter measurements showed no significant difference (p = 0.29). Comparison of automated versus manual segmentation of volumetric segmentations showed significant differences for TV+ and TV (p<0.05) but no significant differences for CETV (p>0.05) with regard to the Dice overlap coefficients. Spearman's rank correlation coefficients (ρ) of TV+, TV and CETV showed highly significant correlations between automatic and manual segmentations. Tumor localization did not influence the accuracy of segmentation. CONCLUSIONS In summary, we demonstrated that BraTumIA supports radiologists and clinicians by providing accurate measures of cross-sectional diameter-based tumor extensions. The automated volume measurements were comparable to manual tumor delineation for CETV tumor volumes, and outperformed inter-rater variability for overlap and sensitivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A generative model for segmentation of tumor and organs-at-risk for radiation therapy planning of glioblastoma patients

We present a fully automated generative method for simultaneous brain tumor and organs-at-risk segmentation in multi-modal magnetic resonance images. The method combines an existing whole-brain segmentation technique with a spatial tumor prior, which uses convolutional restricted Boltzmann machines to model tumor shape. The method is not tuned to any specific imaging protocol and can simultaneo...

متن کامل

Segmenting Glioma in Multi-Modal Images using a Generative-Discriminative Model for Brain Lesion Segmentation

In this paper, we evaluate a generative-discriminative approach for multi-modal tumor segmentation that builds – in its generative part – on a generative statistical model for tumor appearance in multi-dimensional images [1] by using a “latent” tumor class [2, 3], and – in its discriminative part – on a machine learning approach based on a random forest using long-range features that is capable...

متن کامل

Redundant Multi-Modal Integration of Machine Vision and Programmable Mechanical Manipulation for Scene Segmentation

The main idea in this paper is that one cannot discern the part-whole relationship of three-dimensional objects in a passive mode without a great deal of a priori information. Perceptual activity is exploratory, probing and searching. Physical scene segmentation is the first step in active perception. The task of perception is greatly simplified if one has to deal with only one object at a time...

متن کامل

Broadcast News Story Segmentation Using Conditional Random Fields and Multimodal Features

This paper proposes to integrate multi-modal features using conditional random fields (CRF) for broadcast news story segmentation. We study story boundary cues from lexical, audio and video modalities, where lexical features consist of lexical similarity, chain strength and overall cohesiveness, acoustic features involve pause duration, pitch, speaker change and audio event type, and visual fea...

متن کامل

Multi-modal human-machine communication for instructing robot grasping tasks

A major challenge for the realization of intelligent robots is to supply them with cognitive abilities in order to allow ordinary users to program them easily and intuitively. One way of such programming is teaching work tasks by interactive demonstration. To make this effective and convenient for the user, the machine must be capable to establish a common focus of attention and be able to use ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014